RASC STRATOSPHERIC PLATFORM EARTH SCIENCE WORKSHOP

STRATOSPHERIC PLATFORM OPTIONS

19 June 2002

Topics

Purpose Plan **Stated Revolutionary Platform Capabilities Platform Options Current / Revolutionary Platform Comparison Evaluation Criteria Development Challenges Summary**

Purpose of Briefing

- Discuss future study plans
- Provide you background on existing and revolutionary platform capabilities
- To refresh memories and stretch your minds about platforms beyond what is available today

Plan for Developing Stratospheric Platform Options

- Identify and compare platform options
- Evaluate platform options relative to stated capabilities and Earth science objectives

Platform Identification and Comparison

- Understand science goals as developed by the Earth Science Working Group and the Earth science workshop
- Access literature and research stratospheric platform systems and concepts
- Develop list of potential stratospheric platforms with required capabilities
- Compare candidate platforms to stated requirements
- Consider both present and future capabilities in RASC context

Evaluate Platforms

- Develop objective stratospheric platform evaluation criteria
- Perform trade studies and independent analysis
- Use scaling models for candidate future platforms
- Evaluate the suitability of each potential platform for meeting science goals and requirements developed at the workshop
- Prioritize potential platforms by their suitability for meeting science goals

Revolutionary Stratospheric Platform Capabilities

- 30- to 35-km constant altitude
- 100-day flights (eventually 365 days)
- 1 kW of power
- 200 kg or more payload capacity
- Make in situ measurements between 20-35 km altitude
- Payload recovery at end of flight

Stratospheric Platform Options

- Piloted aircraft
- Balloon systems
- Unmanned Air Vehicles
- Super-pressure Airships

Preliminary Filter for Selection of Stratospheric Platform Options

- Sustained flight above 60,000 ft altitude
- Historical, operational, currently under development and/or test and conceptual

Piloted Aircraft

- Historical
 - SR-71 (stored)
- Operational
 - ER-2
 - U-2
 - WB-57F
 - Mig-25
- Under development
 - Proteus

Balloons

- Historical
 - Small super-pressure
 - Racoon
 - Anchor
- Operational
 - Conventional zero pressure (ZP)
 - Polar summer zero pressure (LDB)
 - IR hot air (MIR)
- Under development
 - Ultra-long Duration Balloon (ULDB) NASA
 - GAINS Anchor GSSL
- Concepts
 - Advanced Zero Pressure
 - Guided stratospheric super-pressure

Unmanned Air Vehicles (UAVs)

- Historical
 - Perseus B
 - Raptor
 - Altus II
 - Pathfinder
- Operational
 - Global Hawk
 - BQM-34 Firebee
- Under development
 - Helios
- Concepts
 - Theseus B
 - Heliplat

Superpressure Airships

- Operational
 - None
- Under development
 - Sounder SRI
 - Stratsat ATG
- Concepts
 - Stratospheric LTA platform Japan
 - High Altitude Airship Lockheed+
 - High Altitude Long Endurance (HALE) airship- ESA

RASC Stratospheric Platform Earth Science Workshop

PLATFORM COMPARISON -1

Current Earth Science Platforms	Mission Duration	Science Instrument Capability, kg	Typical Altitude, km	In Situ Measurements (20-35 km)	Power to Instruments, W	Payload Recovery at End of Flight	
Polar Sun Sync. Satellites	10 years	200-800	800	No	200-1000	No	
Moderate Incl. Satellites	10 years	200-800	500	No	200-1000	No	
Stratospheric Balloons	3-10 days	2000	35	Yes at float altitude	600-1000	Mostly	
Stratospheric Balloons - Polar	10-33 days	1000	35	Yes at float altitude	600	Mostly	
IR Balloons	20-70 days	10-50	17-28	Yes over oscillation range	50	No	
Stratospheric Aircraft	<1 day	860-1650	20	No	1300-7000	Yes (Piloted) Mostly (UAV)	
Radio/Drop Sondes	2 hours	0.1	Radio to ~30 Drop from 20	Yes to ~30 (Radiosondes)	0.05	No	
Revolutionary Earth Science Platform	100 days to 1 year	200 or more	30-35	Yes	1000	Yes	

RASC Stratospheric Platform Earth Science Workshop

PLATFORM COMPARISON -2

Current Earth Science Platforms	Coverage	Site Coverage Duration	Diurnal Coverage	Surface Speed, m/s	"Air" Speed, m/s	Vertical Coverage	Resolution of Vertical Profiling	Surface Resolution (1° FOV), km	Signal-to- Noise Ratio
Polar Sun Sync. Satellites	Global	minutes	Two times of day	7,452	7,466	TOA to Surface	1-5 km	14.0	Low
Moderate Incl. Satellites	No polar	minutes	Day and night	7,613	7,627	TOA to Surface	1-5 km	8.7	Low
Stratospheric Balloons	Regional	hours	Day and night	0-50	<0.01	TOA to Surface	0.1 to 1 km	0.6	High
Stratospheric Balloons - Polar	Regional	hours	Day only	0-50	<0.01	TOA to Surface	0.1 to 1 km	0.6	High
IR Balloons	Regional	hours	Day and night	0-50	<0.01	20 km to Surface	0.1 to 1 km	0.3-0.5	High
Stratospheric Aircraft	Specific Site to Regional	Up to 24 hours	Day and/or night	0-200	15-180	20 km to Surface	0.1 to 1 km	0.3	High
Radio/Drop Sondes	Specific Site	2 hours	Day and/or night	0-50	3-5 vertical	Surface to 20 km	0.01 km	N/A	High
Revolutionary Earth Science Platform	??	??	??	??	??	??	??	??	??

Platform Evaluation Criteria - 1

- Meets science requirements
- Payload capability
 - Size or performance
 - Altitude
 - Duration
 - Range
 - Speed
 - Power availability

- Gross platform size and mass
 - Larger systems carry more payload and cost more
- In situ measurement ability
 - Too slow or too fast
 - Vertical velocity

Platform Evaluation Criteria - 2

- Launch, operations and payload recovery
 - Launch complexity
 - Weather and seasonal limitations
 - Solar illumination
 - Facilities needs
 - Air traffic control limitations
 - International overflight
 - Human, property and payload safety requirements
 - Landing site geography
- Flight path control
 - Position and attitude control requirements
 - Seasonal and latitudinal wind effects e.g. station-keeping
 - Formation and network control ability

Platform Evaluation Criteria - 3

- Reliability
- Airborne life-limiting factors
 - UV degradation of materials
 - Consumables
 - Hardware failure
- Life-cycle costs
 - Platform research, development and testing
 - Recurring and replacement
 - Operations and disposal

RASC Stratospheric Platform Earth Science Workshop

Potential Platform Development Challenges

- Long-duration flight in stratospheric environment
- Platform flight path control
- Launch location and launch time flexibility
- Reliable operation and payload recovery
- Precise orientation and pointing knowledge
- Payload power
- Low life-cycle cost

Summary

- Potential candidate stratospheric platforms are being identified
- No current platform has all stated capabilities of revolutionary stratospheric platform
- Pathways exist and development is ongoing for several platforms that could have the potential to meet stated capabilities
- Criteria for evaluation of platform options are being developed
- The ability to meet Earth science requirements will be a key element of the planned platform evaluation
- Platform development challenges identified